matchbench.evaluator package¶
Submodules¶
matchbench.evaluator.base_evaluator module¶
- class matchbench.evaluator.base_evaluator.CTAEvaluator(model, dataset, test_batch_size=128, output_dir='result/', device=device(type='cuda'))¶
Bases:
Evaluator
- evaluate(model=None, output_dir='result/')¶
- class matchbench.evaluator.base_evaluator.EAEvaluator(test_dataset, train_dataset=None, split='valid', test_batch_size=128, model=None, output_dir='result/', mid_file_dir='', stage=1, device=device(type='cuda'))¶
Bases:
Evaluator
- evaluate(model=None, output_file=None, stage=1)¶
- class matchbench.evaluator.base_evaluator.EMEvaluator(dataset, split='test', test_batch_size=128, model=None, output_dir='result/', device=device(type='cuda'))¶
Bases:
Evaluator
- evaluate(model=None, output_file=None)¶
matchbench.evaluator.metrics module¶
- matchbench.evaluator.metrics.CSLS_cal(sourceVec, targetVec, device, batch_size=1024, topk=50)¶
- matchbench.evaluator.metrics.batch_mat_mm(mat1, mat2, device, bs=128)¶
- matchbench.evaluator.metrics.batch_topk(mat, bs=128, topn=50, largest=False)¶
- matchbench.evaluator.metrics.cos_sim_mat_generate(emb1, emb2, device, bs=128)¶
return cosine similarity matrix of embedding1(emb1) and embedding2(emb2) emb: [batch, entity id, embedding vector]
- matchbench.evaluator.metrics.hits(index_mat)¶